Allen: A High Level Trigger on GPUs for LHCb

Thomas Boettcher

on behalf of the LHCb Real Time Analysis project

Connecting The Dots April 20, 2020

Triggering on MHz Signals

• General Purpose Detectors: Can trigger efficiently at ~ 100 kHz with single detector systems (e.g. high $E_{\rm T}$ calorimeter clusters)

LHCb: The $b\bar{b}$ and $c\bar{c}$ rate will exceed a MHz, and final state particles can have $p_{\rm T} \lesssim 1 \text{ GeV}$

Triggering on Heavy Flavor Decays

- LHCb-TDR-016
- Thomas Boettcher

- Heavy flavor decays produce displaced low-p_T tracks
- Characteristic signal is a displaced secondary vertex
- Requires information from the entire tracking system
- Solution: read out the full detector at 40 MHz in Run III

The Evolution of the LHCb Trigger

Why make a GPU trigger?

- GPUs offer more theoretical FLOPS* in a compact package
- Lower cost per theoretical FLOPS
- Many HLT1 tasks are inherently parallel

* FLOPS aren't everything. LHCb also has a viable CPU HLT1 for Run III. See Louis Henry's talk: A 30 MHz software trigger and reconstruction for the LHCb upgrade

The Allen Project

- Project began in February 2018: gitlab.cern.ch/lhcb/Allen
- \blacksquare Standalone application requiring only C++17 and CUDA v10.2
- First publication accepted: arxiv:1912.09161

What's new since CTD2019?

Allen in April 2019

Brij Kishor Jashal's talk from CTD2019

Since then...

- All reconstruction algorithms completed
- Added trigger selections and output
- Huge gains in throughput
- Improved scalability and configurability

We have a complete HLT1 on GPUs!

- Allen reviewed as a viable option for LHCb's HLT1 in Run 3
- HLT1 technology decision in progress

Allen is for Everyone

Allen isn't just for GPU experts

- Custom memory manager and scheduler hide some tricky parts of CUDA development
- Can be compiled for CPU or GPU
- \blacksquare Most of the ~ 15 Allen developers are students

Allen isn't just for LHCb

- Allen could easily host non-LHCb algorithms
- Could serve as a platform for other high-throughput GPU applications

Reconstruction in HLT1

- Decode data from the VELO, UT, SciFi, and Muon systems
- Cluster detector data into "hits"
- Build tracks (VELO, UT, and SciFi)
- Find primary vertices (PVs) (VELO)
- Match tracks to **Muon** hits
- Fit tracks with a (fast) Kalman Filter
- Make 2-track secondary vertices
- Perform trigger selections

The VELO Detector

■ 26 layers of silicon pixel detectors

- Crucial for primary and secondary vertex finding
- Cluster in constant time using bit masks

VELO Tracking

D. Campora, N. Neufeld, A. Riscos Núñez: "A fast local algorithm for track reconstruction on parallel architectures", IPDPSW 2019

PV Finding

• See Florian Reiss's talk for more info: Fast parallel Primary Vertex reconstruction for the LHCb Upgrade

• See Marian Stahl's talk for more info on a deep learning approach: An updated hybrid deep learning algorithm for identifying and locating primary vertices

UT Tracking

- 4 layers of silicon strips
- Use extrapolated VELO tracks to determine search regions
- Provides initial momentum estimate for extrapolating to SciFi

Fernandez Declara, D. Campora Perez, J. Garcia-Blas, D. vom Bruch, J. Daniel Garca, N. Neufeld , IEEE Access 7 (2019)

SciFi Tracking

- 12 layers of scintillating fibers
- Reconstructs tracks with p > 3 GeV (minimum required for muon ID)
- No $p_{\rm T}$ requirement ($p_{\rm T} > 500 \text{ MeV}$ threshold used in Run 2)

Muon Matching

Match forward tracks to hits in Muon stations

Same algorithm LHCb has used since Run I. See here for more information

Kalman Filter

- Simple: No momentum information
- Param.: Uses momentum from forward tracking in noise calculation

- **Fast VELO-only Kalman Filter**
- Improves track description at position closest to beamline
- Better impact parameter (IP) resolution
- Better descrimination between prompt and displaced tracks
- Takes $\mathcal{O}(1\%)$ of the total sequence time

Selections

Trigger	Rate [kHz]
1-Track	215 ± 18
2-Track	659 ± 31
High- p_T muon	5 ± 3
Displaced dimuon	74 ± 10
High-mass dimuon	134 ± 14
Total	999 ± 38

- Trigger on 1- and 2-track candidates
- Prototype selections cover most LHCb physics
- Replacing cut-based selections with machine learning models will reduce rates
- Allen can handle $\mathcal{O}(100)$ selections with minimal impact on throughput

Signal	GEC	TIS -OR- TOS	TOS	$\operatorname{GEC} \times \operatorname{TOS}$
$B^0 \to K^{*0} \mu^+ \mu^-$	89 ± 2	91 ± 2	89 ± 2	79 ± 3
$B^0 \to K^{*0} e^+ e^-$	84 ± 3	69 ± 4	62 ± 4	52 ± 4
$B_s^0 o \phi \phi$	83 ± 3	76 ± 3	69 ± 3	57 ± 3
$D_s^+ \to K^+ K^- \pi^+$	82 ± 4	59 ± 5	43 ± 5	35 ± 4
$Z o \mu^+ \mu^-$	78 ± 1	99 ± 0	99 ± 0	77 ± 1

GEC: Global Event Cut, TIS: Trigger Independent of Signal, TOS: Trigger On Signal Thomas Boettcher Connecting The Dots April 20, 2020

Performance

- Can handle the full 30 MHz collision rate with < 500 RTX 2080 Ti GPUs from 2018
- Throughput is approaching results quoted at CTD2019, but those were missing
 - SciFi tracking
 - Muon decoding and matching
 - Kalman filter
 - Trigger selections
- Throughput scales well with theoretical TFLOPs, so Allen will speed up as GPUs improve

Future Prospects

Multi-track vertices

Allen can reconstruct forward tracks with no $p_{\rm T}$ requirement

 $\mathbf{Vs.}$

- Allows for efficient triggering using 3- and 4-track vertices
- Could lead to totally new trigger strategies

Future Prospects

Calorimeter clustering in HLT1

- Perfect task for GPUs
- **E**lectron identification in HLT1

• Many interesting measurements use electrons, e.g. $R(K^*), A' \rightarrow e^+e^-$

Phys. Rev. D92 (2015) no. 11, 115017 Connecting The Dots April 20, 2020 20 /

Allen is the first implementation of a full software trigger stage on GPUs

- LHCb's baseline HLT1 has been implemented on GPUs
- Optimizations and improvements continue

Allen could allow LHCb to expand its Run III physics program

- Speeding up HLT1 allows it to handle additional tasks
- Improved algorithms could lead to an overhauled trigger strategy
- GPUs will continue to improve before Run III begins, opening up more possibilities

GPU FLOPS/USD

Courtesy of Dorothea vom Bruch, arXiv:2003.11491

Integration and stability tests

Adding GPUs to the LHCb DAQ

GPUs fit naturally into the LHCb DAQ Make up cost of GPUs with savings on networking

Thomas Boettcher

Connecting The Dots April 20, 2020 4 / 4